[Study on biocompatibility of titanium alloys].
نویسنده
چکیده
The biocompatibility of two different titanium alloys, Ti-6Al-4V ELI and Ti-5Al-2, 5Fe, and pure titanium were evaluated. The results were as follows: 1) Titanium alloys were implanted into the dorsal subcutaneous tissues of the Hartley guinea-pig for 12 weeks, immersed in calf serum or in Ringer's solution for 8 weeks. The surface changes of the titanium alloys were observed by SEM and the chemical composition was analyzed by XMA. No evident surface changes were found. 2) Three hundred mg, 200 mg and 100 mg of the powders of the tested materials were immersed in 2ml of Eagle's MEM, incubated for 1-7 days, 8-21 days and 22-70 days at 37 C degrees. The amount of metallic elements dissolved in the solutions was measured by ICP and AAS. The detected corrosion rates of V and Al contained in the solution, in which Ti-6Al-4V ELI 100 mg was immersed for 1-7 days, were 194.3 +/- 17.6 and 73.0 +/- 28, 1 pg/mg alloy/day, respectively. V was released more than Al. The amount of Ti was below the detectable limit. The solution Ti-5Al-2.5 Fe 100 mg immersed for 1-7 days contained 31.9 +/- 34.4 pg/mg alloy/day Fe and 25.7 +/- 6.3 pg/mg alloy/day Al. Only in the solution 300 mg immersed for 1-7 days was Ti detected at 1.4 pg/mg alloy/day. 3) By the bacterial mutation assay of Salmonella typhimurium TA 98, Salmonella typhimurium TA 100 and Escherichia coli WP2 uvrA, the solutions, in which the tested materials were immersed, were not found to be mutagenic. 4) By the UDS assay, the grain counts on autoradiography with the solutions, in which the tested materials were immersed, were not greater than the negative control. The results suggest an excellent corrosion resistance of the titanium alloys. Mutagenicity was negative by these mutation assays, indicating that the tested alloys and pure titanium are safe for humans and animals.
منابع مشابه
EFFECT OF ANODIC OXIDATION ON THE CORROSION BEHAVIOR OF NICKEL-TITANIUM SHAPE MEMORY ALLOYS IN SIMULATED BODY FLUIDS (SBF)
The effect of anodic oxidation of a NiTi shape memory alloy in sulfuric acid electrolyte on its surface characteristics was studied. Surface roughness was measured by roughness tester. Surface morphology was studied using optical microscopy (OM) and scanning electron microscopy (SEM). Corrosion behavior was specified by recording Potentiodynamic polarization cur...
متن کاملTitanium Oxide: A Bioactive Factor in Osteoblast Differentiation
Titanium and titanium alloys are currently accepted as the gold standard in dental applications. Their excellent biocompatibility has been attributed to the inert titanium surface through the formation of a thin native oxide which has been correlated to the excellent corrosion resistance of this material in body fluids. Whether this titanium oxide layer is essential to the outstanding biocompat...
متن کاملBiocompatibility of a titanium–aluminum nitride film coating on a dental alloy
The purpose of this investigation was to develop a coating technique and to study the characteristics of titanium–aluminum nitride [(Ti,Al)N] films deposited on a base-metal alloy (Wiron88R) substrate. Titanium–aluminum nitride thin films were deposited on the alloy surface using a reactive radiofrequency sputtering method. The electrochemical properties of three specimens with and without coat...
متن کاملBiocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts and Macrophages
The biomaterials used to maintain or replace functions in the human body consist mainly of metals, ceramics or polymers. In orthopedic surgery, metallic materials, especially titanium and its alloys, are the most common, due to their excellent mechanical properties, corrosion resistance, and biocompatibility. Aside from the established Ti6Al4V alloy, shape memory materials such as nickel-titani...
متن کاملRecent Progress in Mechanically Biocompatible Titanium-Based Materials
Mechanical and biological biocompatibility is important consideration for materials that are used as metallic implants. During the past two decades, many β-type titanium alloys composed of non-toxic and hypoallergenic elements with low Young’s moduli have been developed worldwide. Recently, the development of new titanium-based materials to improve the mechanical and biological biocompatibility...
متن کاملMechanical Strength and Biocompatibility of Ultrafine-Grained Commercial Purity Titanium
The effect of grain refinement of commercial purity titanium by equal channel angular pressing (ECAP) on its mechanical performance and bone tissue regeneration is reported. In vivo studies conducted on New Zealand white rabbits did not show an enhancement of biocompatibility of ECAP-modified titanium found earlier by in vitro testing. However, the observed combination of outstanding mechanical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Kokubyo Gakkai zasshi. The Journal of the Stomatological Society, Japan
دوره 56 2 شماره
صفحات -
تاریخ انتشار 1989